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Due to their physicochemical and toxicological properties, polychlorinated dibenzofurans are regarded as a class
of compounds providing reason for serious environmental concern. While the nonhalogenated basic structure
dibenzofuran is effectively mineralized by appropriate bacterial strains, its polychlorinated derivatives are not. To
elucidate the ability of the strain Sphingomonas sp RW1 to metabolize some of these chlorinated derivatives, we
performed turnover experiments using 2,7-dichloro- and 2,4,8-trichlorodibenzofuran. As indicated by the oxygen-
uptake rates determined for these two chlorinated dibenzofurans, Sphingomonas sp RW1 can catabolize these
chlorinated dibenzofurans yielding small quantities of oxidation products, which we isolated and subsequently
characterized employing GC/MS and 1H- as well as 13C-NMR spectroscopy. In the case of 2,7-dichlorodibenzofuran,
two metabolites accumulated, which we identified as 6-chloro- and 7-chloro-2-methyl-4 H-chromen-4-one. The single
metabolite isolated from the turnover experiments performed with 2,4,8-trichlorodibenzofuran was unequivocally
identified as 6,8-dichloro-2-methyl-4 H-chromen-4-one.
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Introduction

Polychlorinated dibenzo-p-dioxins (PCDDs) and dibenzo-
furans (PCDFs) are compounds that, although not produced
on an industrial scale, have entered the global environment
in significant amounts. Complex mixtures of congeners of
PCDD/Fs are therefore frequently detected in environmen-
tal samples such as sediments [7,12,20]. These compounds
are formed as unwanted by-products of industrial processes
[4,15], during municipal incineration [18], or during recyc-
ling of plastics and metals [22], and are highly persistent
under environmental conditions [27].

The well-documented toxicity of these compounds
[2,23], especially of those derivatives with halogen sub-
stituents present in positions 2, 3, 7 and 8, has put these
noxious substances into the focus of environmental
research. Due to their catabolic versatility, bacteria are able
to degrade a huge range of environmentally relevant aro-
matic compounds [6]. Accordingly, bacterial strains utiliz-
ing the nonchlorinated basic structures of polychlorinated
dibenzo-p-dioxins and dibenzofurans have been isolated,
and the catabolism of dibenzo-p-dioxin and dibenzofuran
has been elucidated in detail [3,9,10,16,25,28]. However,
although aerobic catabolism of monochlorinated derivatives
by Sphingomonasspp has been reported [13,26], there is
still a lack of knowledge concerning the bacterial catab-
olism of chlorinated derivatives carrying two or more chlor-
ine substituents.
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Materials and methods

Organism, growth conditions and turnover
experiments
Cultivation of Sphingomonassp RW1 (DSM 6014) was
done by employing a mineral salts medium [10] using
dibenzofuran (1 g L−1) as sole source of carbon and energy.
For co-oxidation experiments, cells were grown in 1-L
Erlenmeyer flasks containing 300 ml of the growth medium
on an orbital shaker (120 rpm) at 28°C to the late-
exponential growth phase. Cells were separated from
dibenzofuran crystals by filtration, harvested and resus-
pended in 1/10 volume of phosphate buffer (pH 7.2,
20 mM). After incubating this suspension for about 30 min
on an orbital shaker (120 rpm, 28°C) to allow for consump-
tion of residual dibenzofuran, cells were washed twice and
resuspended in phosphate buffer (pH 7.2, 20 mM) to an
OD578 nm of about 6.5. The selected substrate was then
added to this suspension from a stock solution (prepared in
N,N-dimethylformamide [DMF]) to a final concentration of
about 100 mg L−1. Similarly performed incubations
employing poisoned cells (10 mM NaN3) served as con-
trols.

Oxygen uptake rates
Substrate-specific oxygen uptake rates were determined
using a Clark-type electrode as described previously [10].
The substrates employed were added from stock solutions
(100 mM) prepared in DMF.

Analytical methods
Optical densities at 578 nm and UV spectra were recorded
using a Uvikon 922 spectrophotometer. Analytical HPLC
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to check for formation of oxidation products was done as
reported [19].1H-NMR and 13C-NMR spectra at 400 MHz
were obtained using a Bruker WP 400 spectrometer (Bruker
GmbH, Karlsruhe, Germany) with tetramethylsilan as
internal standard. Mass spectra were obtained using a quad-
rupol mass spectrometer MD800 and a PLATFORM II sys-
tem (Fisons Instruments, Manchester, UK) in EI or CI
mode at 70 eV coupled to a Fisons gaschromatograph
GC8000 using an Optima 5-MS GC-column (30 m,
0.25 mm i.d., 25mm film thickness, Macherey-Nagel,
Düren, Germany) and the following temperature pro-
gramme: 60°C for 5 min→ (5°C min−1) → 320°C for
20 min. Extracts were purified by using column chromato-
graphy (silica gel, Mesh 240–400, Merck, Darmstadt,
Germany) with mixtures of ethyl acetate, hexane and petrol
ether as eluent. Products were detected by monitoring
absorption at 254 nm.

Chemicals
2,7-Dichlorodibenzofuran was prepared from the corre-
sponding diaminodibenzofuran by chlorination of its
diazonium salt using the Sandmeyer reaction [5]. 2,7-Dia-
minodibenzofuran was obtained upon reduction of 2,7-dini-
trodibenzofuran, which in turn was produced by nitration
of dibenzofuran [13]. 2,4,8-Trichlorodibenzofuran was pur-
chased from Aldrich (Steinheim, Germany).

6-Chloro-2-methyl-4H-chromen-4-one was synthesized
from 5-chloro-2-hydroxyacetophenone according to the
literature [26]. 7-Chloro- and 6,8-dichloro-2-methyl-4-H-
chromen-4-one were obtained in an analogous manner start-
ing from 4-chloro-2-hydroxyacetophenone and 3,5-
dichloro-2-hydroxyacetophenone, respectively. Friedel–
Crafts acylation of chlorophenols was employed to produce
the required 4-chloro-2-hydroxyacetophenone from 3-chlo-
rophenol and the 3,5-dichloro-2-hydroxyacetophenone
from 2,4-dichlorophenol [11,14]. The synthetic references
were used to verify the structures of isolated metabolites.
All other compounds used were of the highest purity com-
mercially available.

Results

Resting cells of Sphingomonassp RW1 grown with
dibenzofuran were able to oxidize 2,7-dichloro- and 2,4,8-
trichlorodibenzofuran, albeit at low rates when compared
to the nonsubstituted growth substrate, dibenzofuran
(Table 1).

As shown by HPLC analysis, turnover experiments using
2,7-dichlorodibenzofuran led to the accumulation ofmM-
amounts of two metabolites. The bacterial suspensions were
extracted with chilled ethyl acetate (4× 1/4 vol) to remove
excess substrate. After acidification of the remaining water
layer with ortho phosphoric acid to pH 2.5 the extraction
was repeated. The organic layer was dried over Na2SO4,
and after the solvent had been removed under reduced
pressure, the residue was purified by column chromato-
graphy using silica gel as described in Materials and
Methods. The mass spectrum of the first metabolite
(M+194) was very similar to that reported by Wilkeset al
[26] for 6-chloro-2-methyl-4H-chromen-4-one, which had
been produced in co-oxidation experiments performed with

Table 1 Relative oxygen uptake rates obtained for chlorinated dibenzo-
furans by resting cells ofSphingomonassp RW1 after growth with
dibenzofuran

Substrate Oxygen uptake
(%)a

Dibenzofuran 100 (250)
2-Chlorodibenzofuran 51
3-Chlorodibenzofuran 37
2,7-Dichlorodibenzofuran 9
2,4,8-Trichlorodibenzofuran 2

aActivities, determined as nmoles O2 per min per mg of protein (means,
n . 3, SD# 6%) and corrected for endogenous respiration and autoxi-
dation, are compared to that obtained for dibenzofuran (shown in brackets)
which was taken as 100%.

Sphingomonassp RW1 from 2,8-dichlorodibenzofuran.
The corresponding1H-NMR spectrum [CDCl3,
400.13 MHz,d = 8.141 (d, 1H, H5); 7.578 (dd, 1H, H7);
7.377 (d, 1H, H8); 6.178 (s, 1H, H3); and 2.393 (s, 3H,
Me-H) ppm; JH5–H7 = 2.54 Hz; JH7–H8 = 8.64 Hz] and13C-
NMR data [CDCL]3, 400.13 MHz,d = 176.972; 166.480;
154.811; 133.645; 130.910; 125.167; 124.581; 119.543;
110.569; and 20.587 ppm] were identical to those of syn-
thetic 6-chloro-2-methyl-4H-chromen-4-one, confirming
the structure of the metabolite. The mass spectrum of the
second metabolite resembled that of the first one, indicating
the presence of a single chlorine (Figure 1). However,
the 1H-NMR spectrum [CDCl3, 400.13 MHz, d = 8.108
(d, 1H, H5); 7.436 (d, 1H, H8); 7.341 (dd, 1H, H6); 6.164
(s, 1H, H3); and 2.381 (s, 3H, Me-H) ppm;
JH5–H6 = 8.65 Hz; JH6–H8 = 1.53 Hz] and the13C-NMR
spectrum [CDCl3, 400.13 MHz, d = 177.311; 166.315;
156.588; 139.453; 127.082; 125.798; 122.158; 117.910;
110.847; and 20.530 ppm] revealed the structure of this
compound to be the isomeric 7-chloro-2-methyl-4H-chro-
men-4-one.

The dead-end product (M+228) isolated from the 2,4,8-
trichlorodibenzofuran oxidation experiments performed
with dibenzofuran-grown cells ofSphingomonassp RW1,
exhibited two distinct UV-maxima atlMeOH

max 227 nm (log
e 4.46) andlMeOH

max 310 nm (loge 3.82). The isotope clus-
ter in the mass spectrum (Figure 2) revealed the presence of
two chlorines. Again, the spectrum showed a characteristic
signal at M+−40 = M+−C3H4, formed upon retro cleavage
of the pyrone ring. The1H-NMR spectrum [CDCl3,
400.13 MHz, d = 8.056 (d, 1H, H5); 7.692 (d, 1H, H7);
6.221 (d, 1H, H3); and 2.459 (d, 1H, Me-H) ppm;
JH5–H7 = 2.55 Hz] and the13C-NMR spectrum [CDCl3,
400.13 MHz, d = 176.263; 166.653; 150.800; 133.612;
130.640; 125.428; 123.926; 110.771; and 20.523 ppm]
clearly identified this compound as the novel metabolite,
6,8-dichloro-2-methyl-4H-chromen-4-one.

Experiments performed with poisoned controls showed
no detectable formation of metabolites from 2,7-dichloro-
or 2,4,8-trichlorodibenzofuran.

Discussion

Although the ability of bacteria to transform dichloro- and
trichlorodibenzofurans under reducing conditions has been
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Figure 1 Mass spectra (70 eV) of (a) 6-chloro- and (b) 7-chloro-2-methyl-4H-chromen-4-one produced from 2,7-dichlorodibenzofuran bySphingomonas
sp RW1.

Figure 2 Mass spectrum (70 eV) of 6,8-dichloro-2-methyl-4H-chromen-4-one produced from 2,4,8-trichlorodibenzofuran bySphingomonassp RW1.
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reported [1], there is need for more detailed information
concerning the way these compounds are catabolized aero-
bically. By using Sphingomonassp RW1 we showed
recently that 2,3-dichlorodibenzofuran can be catabolized
to 4,5-dichlorosalicylate and 2,8-dichlorodibenzofuran to 6-
chloro-2-methyl-4H-chromen-4-one [26]. We employed
2,7-dichlorodibenzofuran which, in contrast to the sym-
metrically substituted 2,8-dichlorodibenzofuran, should
yield two different monochlorinated 2-methyl-4H-chro-
men-4-ones if the initial dioxygenolytic attack takes place
at both of the two rings. Indeed, the identification of 6-
chloro- and 7-chloro-2-methyl-4H-chromen-4-one in our
turnover experiments using 2,7-dichlorodibenzofuran,
clearly revealed the ability ofSphingomonassp RW1 to
attack either of the rings (Figure 3).

The aerobic transformation of 2,4,8-trichlorodibenzofu-
ran by several bacterial strains has been reported recently
[21,26]; however, no details on isolation and structural
determination of any catabolites were given. To enable
reliable predictions on the environmental fate and impact
of these compounds, elucidation of their potential metabolic
pathways is important, as microbial metabolites can be
more problematic than the parent compounds [17]. By
employingSphingomonassp RW1 we were able to demon-

Figure 3 Proposed catabolism of 2,7-dichlorodibenzofuran bySphingo-
monassp RW1. 1= 2,7-Dichlorodibenzofuran; 2= 7-chloro-2-methyl-4H-
chromen-4-one; 3= 6-chloro-2-methyl-4H-chromen-4-one.

Figure 4 Catabolism of 2,4,8-trichlorodibenzofuran bySphingomonassp
RW1. 1= 2,4,8-Trichlorodibenzofuran; 2= 6,8-dichloro-2-methyl-4H-
chromen-4-one.

strate for the first time its ability to oxidize a trichlorodiben-
zofuran and identified 6,8-dichloro-2-methyl-4H-chromen-
4-one as a major catabolite. Probably due to the poor
bioavailability of these chlorinated dibenzofurans, the
transformation rates are rather low. Nevertheless, these
findings demonstrate the amazing potential ofSphingo-
monassp RW1 for the biodegradation of these xenobiotic
compounds and confirm the biotechnological potential of
the genusSphingomonas[24]. When introduced into differ-
ent soils,Sphingomonassp RW1 quantitatively mineralized
dibenzofuran and dibenzo-p-dioxin [8], which was not
affected notably by the presence of additional, readily util-
izable carbon sources. Having identified the degradation
products it now remains to be seen, whether these com-
pounds can be produced in contaminated soils and if known
or not-yet-described bacterial strains have the potential to
utilize the chlorinated methylchromenones we identified
here as sources of carbon and energy.
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Z Umweltchem Ökotox 5: 122–130.

9 Fortnagel P, RM Wittich, H Harms, S Schmidt, S Franke, V Sinnwell,
H Wilkes and W Francke. 1989. New bacterial degradation of the
biaryl ether structure. Naturwissenschaften 76: 523–524.

10 Fortnagel P, H Harms, RM Wittich, S Krohn, H Meyer, V Sinnwell,
H Wilkes and W Francke. 1990. Metabolism of dibenzofuran by
Pseudomonassp strain HH69 and the mixed culture HH27. Appl
Environ Microbiol 56: 1148–1156.

11 Gabriel G, R Pickles and JHP Tyman. 1989. The synthesis of novel
substituted 1-benzoxepine-3,5–2H,4H-diones. J Chem Res 2713–2739.
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